# Biologics for Nasal Polyps: Silver Bullet or Important Adjunct?







#### Pete S. Batra, MD, FACS, FARS

Stanton A. Friedberg, MD, Chair in Otolaryngology
Professor and Chairman
Past President, American Rhinologic Society
Department of Otorhinolaryngology – Head and Neck Surgery
Rush University Medical Center
Chicago, Illinois





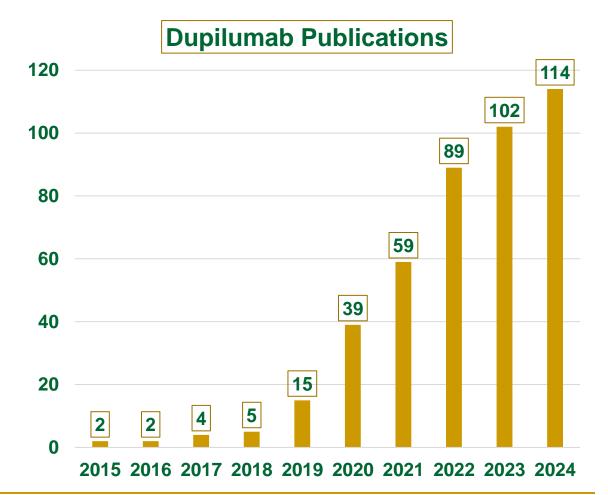
### Disclosures

- ➤ Site PI: Cyrano Therapeutics FDA trial
- ➤ Advisory Board meeting: Neurent Medical





# Objectives


- Comprehend the mechanism of action of key biologics
- > Appreciate data for key pivotal phase III clinical trials
- > Recognize indications, benefits, and risks of biologics
- ➤ Understand the economics of biologics





# Biologics for Nasal Polyps

- Dupilumab and nasal polyps: 364
- Omalizumab and nasal polyps: 221
- Mepolizumab and nasal polyps: 219







# Biologics: Background

- ➤ Initial description of biologics for nasal polyps in 2006¹
  - > 24 subjects with bilateral nasal polyps
  - ➤ Single IV infusion reslizumab (anti-IL-5) or placebo
  - ➤ Individual polyp scores improved in 50% at 4 weeks
- ➤ Initial use of omalizumab for polyps in setting of asthma²
  - > 24 allergic and non-allergic patients (anti-IgE vs placebo)
  - Significant decrease in polyp scores
  - Reduction in CT scores and symptoms
- ➤ Prof. Heinz Stammberger circa 2008 ARS meeting
  - > Discussed biologics for polyps as paradigm shift











# Biologics: Mechanism of Action

- ▶ 85% of CRSwNP reveal type 2 inflammatory signature with expression of IL-4, IL-5, and IL-13 and ↑IgE concentrations
- Biomarkers form targets for therapeutic approaches with monoclonal antibodies


| Inflammatory mediator                                                                                                                      | Drug                                         | Action                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IgE: Activates allergic inflammatory cascade                                                                                               | Omalizumab                                   | Anti-IgE MAb; binds to the Fc region of IgE, which reduces circulating IgE and produces extensive anti-inflammatory effects with eosinophilic apoptosis induction; FceRI receptor, which binds specific IgE on basophils, mast cells, and dendritic cells, is downregulated with time, leading to a general step-down in overall allergic inflammation |
| IL-5: Key mediator in chemotaxis, differentiation, activation, and survival of eosinophils                                                 | Reslizumab,<br>mepolizumab,<br>bendralizumab | Anti-IL-5 MAb; binds and inhibits IL-5Ra subunit depleting eosinophils.                                                                                                                                                                                                                                                                                |
| IL-4: Produced by Th2; class switching of B cells to plasma cells and IgE production; IL-13: Th2 inflammation initiation and amplification | Dupilumab                                    | Anti–IL-4 MAb; targets the IL-4 receptor $\alpha$ subunit to inhibit IL-4 and IL-13 cytokines central to TH2 mediated inflammation.                                                                                                                                                                                                                    |





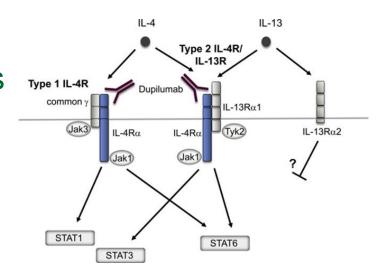
# Biologics: Mechanism of Action

| Biologic name | Pharmacology | FDA approval for treatment of CRSwNP (y) |
|---------------|--------------|------------------------------------------|
| Dupilumab     | Anti-IL-4Rα  | Yes (2019)                               |
| Omalizumab    | Anti-IgE     | Yes (2020)                               |
| Mepolizumab   | Anti-IL-5    | Yes (2021)                               |





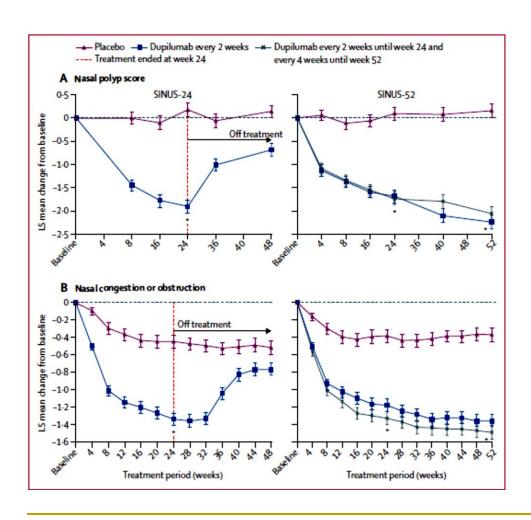



# Pivotal Phase 3 Trials





# Dupilumab: LIBERTY SINUS-24 and SINUS-52 Trials


- ➤ 2 multinational, multicenter RDBPC parallel-group
- ➤ Adult patients with bilateral CRSwNP and symptoms despite intranasal corticosteroid use, systemic steroids in past 2 years, or previous sinus surgery
- > SINUS-24: 67 centers in 13 countries
  - ➤ 143 in dupilumab, 133 in placebo over 24 weeks
- > SINUS-52: 117 centers in 14 countries
  - ➤ 150 in dupilumab every 2 weeks, 145 in dupilumab every 2 weeks for 24 weeks, then every 4 weeks, 153 in placebo over 52 weeks

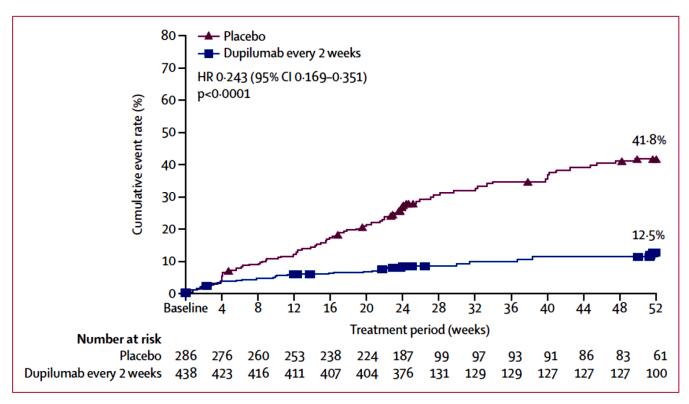






#### LIBERTY SINUS-24 and SINUS-52 Trials




#### At 24 weeks:

- Difference in NPS of dupilumab vs placebo was −2·06 (p<0·0001) in SINUS-24 and −1·80 (p<0·0001) in SINUS-52</p>
- ➤ Difference in nasal congestion or obstruction score was -0.89 (p<0·0001) in SINUS-24 and -0.87 (p<0·0001) in SINUS-52
- ➤ Difference in Lund-Mackay CT scores was -7.44 (p<0·0001) in SINUS-24 and -5.13 (p<0·0001) in SINUS-52





#### LIBERTY SINUS-24 and SINUS-52 Trials



Time to first systemic corticosteroid use or nasal polyp surgery during the treatment period in the pooled analysis of SINUS-24 and SINUS-52 studies

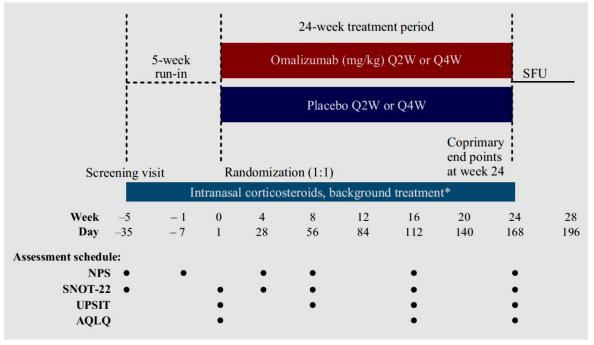


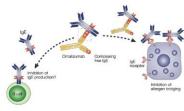


#### LIBERTY SINUS-24 and SINUS-52 Trials

|                                                    | Placebo<br>(n=282) | Dupilumab<br>q2w<br>(n=440) |
|----------------------------------------------------|--------------------|-----------------------------|
| Treatment-emergent adverse events                  |                    |                             |
| Any                                                | 208 (74%)          | 305 (69%)                   |
| Any serious                                        | 16 (6%)            | 15 (3%)                     |
| Any leading to death                               | 0                  | 0                           |
| Any leading to permanent treatment discontinuation | 15 (5%)            | 11 (3%)                     |
| Treatment-emergent adverse events occurring in a   | 5% of patier       | ıts*                        |
| Asthma                                             | 20 (7%)            | 7 (2%)                      |
| Epistaxis                                          | 20 (7%)            | 25 (6%)                     |
| Headache                                           | 24 (9%)            | 32 (7%)                     |
| Injection-site erythema†                           | 22 (8%)            | 28 (6%)                     |
| Nasal polyps                                       | 33 (12%)           | 12 (3%)                     |
| Nasopharyngitis                                    | 41 (15%)           | 55 (13%)                    |

- > 2 deaths (AMI, ICH, both unrelated)
- 7 with conjunctivitis (mild to moderate)
- ➤ 3 with clinically significant eosinophilia (2 EGPA)


Higher conjunctivitis incidence in atopic dermatitis (17.9% – 21.1%) (Akinlade B, et al. *Br J Dermatol* 2019)

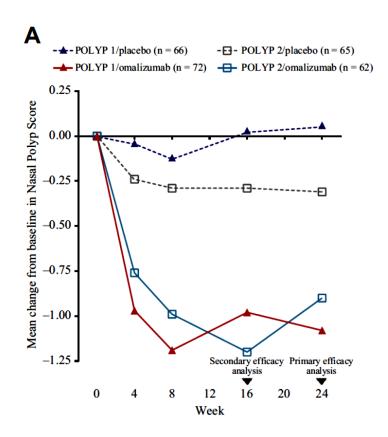


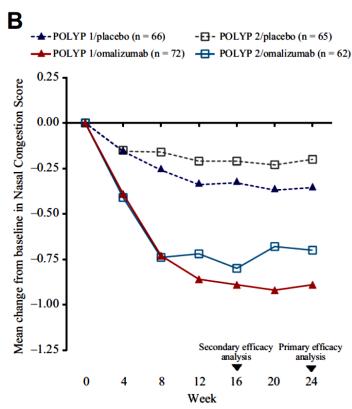



# Omalizumab: POLYP 1 and POLYP 2 Trials

- Adults with refractory CRSwNP randomized (1:1) to omalizumab or placebo
- Intranasal mometasone for 24 weeks
- Coprimary endpoints: change from baseline in nasal polyp and nasal congestion scores
- Secondary endpoints: change from baseline SNOT-22 score, UPSIT, AEs







Nature Reviews | Drug Discov

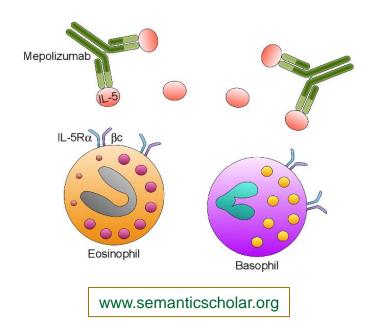




# Omalizumab: POLYP 1 and POLYP 2 Trials



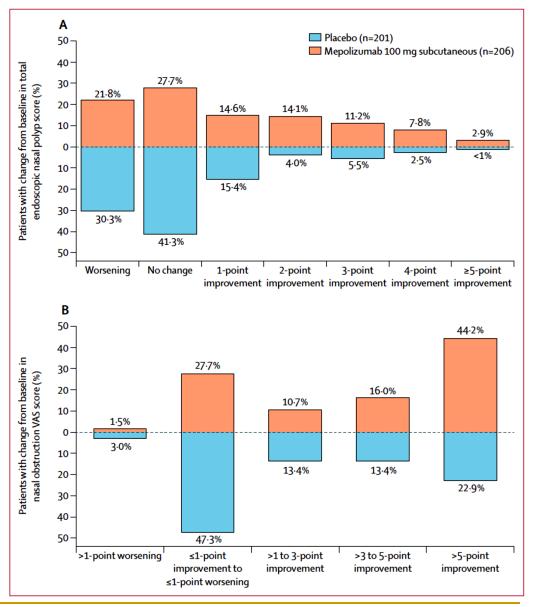



- Statistical reduction in SNOT-22 and TNSS
- Statistical improvement in UPSIT scores
- Adverse events included headaches (8.1%), nasopharyngitis (5.9%), injection site rxns (5.2%), asthma exacerbation (3.7%), arthralgias (3%)





# Mepolizumab: SYNAPSE Trial


- > Randomized, DBPC, parallel-group, phase 3 trial
- > 93 centers across 11 countries
- ➤ Eligibility: >18+ years with recurrent bilateral nasal polyps despite standard of care treatment and at least 1 nasal surgery past 10 years
- ➤ Randomly assigned (1:1) either 100 mg mepolizumab subQ or placebo q4 weeks for 52 weeks
- Also receive standard of care (MF nasal spray, saline irrigations, systemic corticosteroids or antibiotics, or both)
- > 206 received mepolizumab and 201 received placebo





# Mepolizumab: SYNAPSE Trial

- ➤ Adverse events: 30 (15%) receiving mepolizumab and 19 (9%) receiving placebo
- ➤ SAEs: 12 (6%) patients receiving mepolizumab and 13 (6%) receiving placebo (none related to treatment in those receiving mepolizumab)
- Most common: headache, nasopharyngitis, epistaxis, sinusitis, oropharyngeal pain, arthralgias

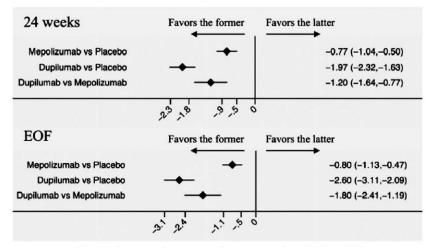




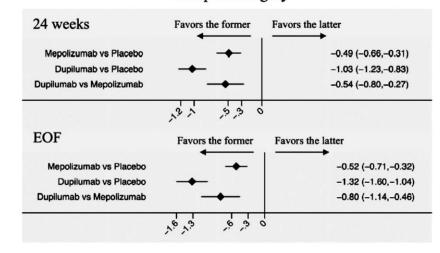


# Comparative Data






# Which Biologic is Better???


#### ➤ Seven RCTs involving 1913 patients¹

- ➤ 4 biologics (benralizumab, dupilumab, mepolizumab, and omalizumab)
- Dupilumab better in decreasing NPS and nasal congestion severity compared to other biologics
- Benralizumab least effective in reducing nasal congestion and SNOT-22 scores
- ➤ Network meta-analysis 9 RCTs with 1,190 pts²
  - Dupilumab best choice and omalizumab second best option for CRSwNP
  - Mepolizumab ranked second in efficacy but highest risk of AEs

#### MD in NPS (95% CI) -with prior surgery



SMD in nasal congestion severity (95% CI)
-with prior surgery







# Comparison of Surgery Vs. Biologics

- Prospective, multicenter cohort of CRSwNP patients, undergoing ESS (2011-19) compared to phase-3 biologic trial data
- > 111 CRSwNP patients met modified inclusion criteria
- ➤ No difference in baseline data, symptom, endoscopy, and CT scores
- ➤ At 24 weeks, ESS demonstrated significantly greater improvements in SNOT-22 compared to one dupilumab trials and both omalizumab trials
- ➤ ESS associated with significantly lower nasal polyp scores compared to dupilumab (p < 0.001) and omalizumab (p < 0.001)
- ➤ At 52 weeks, ESS resulted in statistically similar improvement in SNOT-22 scores compared to dupilumab, but NPS remained significantly lower in the ESS group compared to dupilumab and mepolizumab





# Comparison of Surgery Vs. Biologics

**TABLE 6** Distribution of nasal polyp scores at 24 weeks

| Variable              | Patients with NPS = 0 n (%) | Patients with NPS = 1 n (%) | Patients with NPS = 2 n (%) | Patients with NPS = 3 n (%) | Patients with NPS = 4 n (%) | Patients with NPS ≥ 5 n (%) |
|-----------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| ESS (n = 79)          | 48 (61)                     | 7(9)                        | 14 (18)                     | <b>←</b>                    | 10 (13)                     | <b>→</b>                    |
| Dupi-24 ( $n = 143$ ) | <b>-</b>                    | 6                           | 6 (46)                      | <b>→</b>                    | 27 (19)                     | 50 (35)                     |
| Oma-1&2 ( $n = 128$ ) |                             | 4                           | 2 (31)                      | <b>→</b>                    | 30 (25)                     | 56 (44)                     |

**TABLE 7** Distribution of nasal polyp scores at 52 weeks

|                       | Patients with NPS = 0 | Patients with NPS = 1 | Patients with NPS = 2 | Patients with NPS = 3 | Patients with NPS = 4 | Patients with<br>NPS ≥ 5 |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------------|
| Variable              | n (%)                    |
| ESS (n = 20)          | 9 (45)                | 4 (20)                | 6 (30)                | ←                     | 1(5)                  | <b>→</b>                 |
| Dupi-52 ( $n = 295$ ) | •                     | 1                     | 36 (46)               | <b>→</b>              | 47 (16)               | 112 (38)                 |
| Mepo ( $n = 206$ )    | 6 (2.9)               | 16 (7.8)              | 23 (11.2)             | 29 (14.1)             | 30 (14.6)             | 104 (50)                 |





# Cost Utility Analysis: Dupilumab Vs. ESS

- Markov decision tree economic evaluation over 10-year time horizon
- Scangas et al.<sup>1</sup>
  - ➤ ESS cost total of \$50,426.99 and produced 9.80 QALYs and dupilumab cost \$536,420.22 and produced 8.95 QALYs
  - > 10 times higher treatment cost for dupilumab over surgical intervention
- > Parasher et al.<sup>2</sup>
  - Dupilumab costs \$195,164 and produced 1.78 QALYs, versus ESS costing \$20,549 and producing 1.53 QALYs
  - Implies incremental cost of \$691,691 for dupilumab for every 1-unit increase in QALY compared with ESS





# **Economics of Dupixent®**

- Received regulatory approvals in more than 60 countries
- Indications: atopic dermatitis, asthma, CRSwNP, eosinophilic esophagitis, prurigo nodularis, chronic spontaneous urticaria, and COPD
- ➤ 1,000,000+ patients being treated with Dupixent globally (<u>www.sanofi.com</u>)
- ➤ Monthly retail list price of Dupixent®: \$3,803.20 per carton with 300 mg/2 mL 2 prefilled syringes (<u>www.dupixent.com</u>)
  - "Uninsured" cost \$49,441.60 (26 doses)
- ➤ Q2 2024 Dupixent sales: \$3.6 billion
- Q2 2024 rise YOY in Dupixent sales: 29.2%
- ➤ Forecast for 2024 Dupixent sales: \$14.1 billion (<u>www.pharmavoice.com</u>)





# Patient Cases and Indications





- ▶ 48 y/o female with refractory CRSwNP
- ➤ Inhalant allergies, asthma, and AERD
- Previous sinus surgery 20 years ago
- Dupilumab 300mg subQ q2 weeks
- Dexamethasone nasal drops, cetirizine, and fluticasone/salmeterol

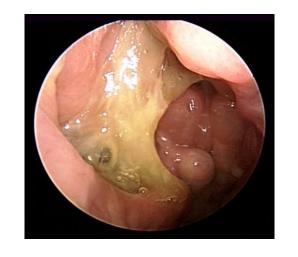








- ➤ Full-house FESS, left CB resection, and septoplasty
- Mometasone irrigations 2mg bid
- Cetirizine and fluticasone/salmeterol
- Dupilumab weaned off after 3 months




12 months





- ▶ 42 y/o female with 5-year h/o protracted sinus issues (2014)
- Negative allergy testing and immune w/u
- Asthma and AERD
- > 3 previous sinus surgeries

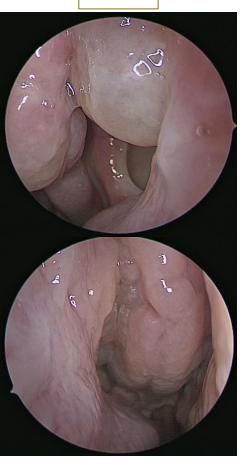














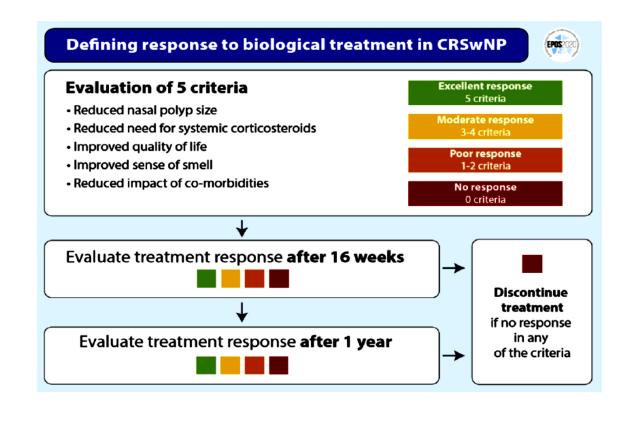



- ➤ Full-house FESS (2015)
- > Relapse at 1 year
- 2016: omalizumab
- ➤ 2017: levofloxacin/mometasone rinses
- 2018: office polypectomy/steroid implants
- ➤ 2018: Nucala injections for asthma
- March 2019: transitioned to dupilumab
  - Improvement with 2 doses
- Maintained on dupilumab q2 weeks
- > SNOT-22 score: 6/110 (July 2024)

2015






January 2023





# EPOS/EUFOREA 2023 Indications for Biologics

#### Indication for biological treatment in CRSwNP Presence of bilateral polyps in patient who had ESS\*\* **THREE** criteria are required Criteria **Cut-off points** Tissue eos ≥10/hpf, Evidence of type 2 inflammation blood eos ≥ 150 total IgE ≥100 ≥2 courses per Yr Need for systemic corticosteroids or contraindication to systemic steroids long term (> 3 months) low dose steroids Significantly impaired quality of life SNOT-22 ≥40 Anosmic on smell test Significant loss of smell (score depending on test) In case of asthma: regular need for Diagnosis of comorbid asthma inhaled corticosteroids







# EUFOREA Consensus on Biologics for CRSwNP

#### No Indication for biologics:

- CRSsNP and lack of signs of type 2 inflammation
- Cystic fibrosis
- Unilateral nasal polyps
- Mucoceles
- General contraindications for biological treatments, such as immunodeficiencies
- Patient-related factors such as noncompliance to therapy





# Limitations of Biologics

- CRSwNP is a heterogeneous disorder does not account for variability in patient disease process
- > Does not address sinus obstruction, mucous stasis, or infectious issues
- Avoid binary choice of biologic vs. surgery
- ➤ Not a silver bullet but critical adjunct....







### Conclusions

- > Rapid expansion on body of knowledge on CRS and biologics
- Comprehensive surgery coupled with medical therapy (steroid irrigations/exhaled delivery system) leads to symptom improvement and mucosal disease control
- Biologics represent an important advance in recurrent polyp disease management (paradigm shift)
- ➤ Idea of repeated sinus surgery has become a thing of the past...
- Need to thoughtfully integrate biologics into the treatment algorithm weighing benefits, side effects, and costs





# Thanks!



Questions?



