MUSICAL FEEDBACK FROM PRESSURE-SENSING INSOLES FOR ASYMMETRIC GAIT RETRAINING

Luisa Cedin¹, Christopher Knowlton¹, Markus A. Wimmer¹ ¹Department of Orthopedic Surgery, Rush University Medical Center, Chicago (IL), USA

INTRODUCTION

- \triangleright Ankle fracture \rightarrow avoidance behavior, load bearing lateralization and reduced ankle range of motion. [1]
- \triangleright Asymmetric gait \rightarrow joint overloading, pain, risk of fall, may drive progression of osteoarthritis (OA). [1,2]

Gait retraining requires constant guidance

BRUSH

PURPOSE: deliver musical feedback based on plantar pressure data that leads to a more symmetric weight-bearing, improved ankle range of motion, and higher pressure under the toes during terminal stance between the affected and

healthy legs.

- New approach = progressive, reward-based auditory feedback based on wireless pressure-sensing insoles.

METHODS

- Case report: 56-year-old male; trimalleolar fracture on the right ankle.
- 2 months post-op = released for full weight-bearing.

RESULTS

- Cadence, speed, and stride length increased (Table 1).
- Mean pressure under toes nearly doubled on the affected side (p < 0.001).
- Less plantar flexion during swing phase at baseline \rightarrow increased after training (**Fig.1**).

- Mean fraction of stance phase significantly increased for the affected leg (p = 0.003); was significantly different between limbs at both time points (p < 0.001).
- Mean total force was higher for the healthy side at baseline and showed a decrease after training (Fig.2).

	Baseline		After Training	
Mean cadence	47.7 strides/min		50.6 strides/min	
Mean speed	0.90 m/s		1.02 m/s	
	Left	Right	Left	Right
Mean stride length (m)	1.23 ± 0.03	1.23 ± 0.04	1.36 ± 0.04	1.37 ± 0.05
Stance % of gait cycle	65.6 ± 1.3	60.0 ± 1.4	64.1 ± 3.8	60.8 ± 2.6
Mean pressure under toes at terminal stance (N/cm ²)	16.03	5.85	14.32	9.27
Total force, 1 st peak (N)	817.4 ± 47.1	750.9 ± 38.7	763.8 ± 51.4	669.5 ± 55.3
Total force, 2 nd peak (N)	899.1 + 41.4	730.5 ± 33.1	817.4 ± 43.9	727.8 ± 54.1

Figure 2. Mean total force curves throughout stance phase at baseline (left) and after training (right). Healthy limb shown in blue, affected shown in red. Error bands represent +/-1 SD.

DISCUSSION

- Patient walked faster with longer stride lengths after training with the auditory feedback.
- Auditory feedback was able to provide clues to apply more pressure under the toes, but mean pressure did not reach the level of the healthy limb.
- Range of motion is more closely related to healthy side after training.
- The affected side closely resembled the healthy one on the mean total force, particularly at terminal stance where the largest differences were observed at baseline.

CONCLUSIONS

Reward-based and progressive musical auditory feedback resulted in a more symmetric distribution of forces during stance, improved plantar flexion and higher toe pressure. Potential to become an evaluation and intervention tool.

ACKNOWLEDGMENTS

This project was supported by Grant Number T32AR 073157 from the National Institute of Arthritis Musculoskeletal and Skin Diseases.

REFERENCES

1. Mirando et al., Diagnostics, 2022. 2. Drongelen, et al., Frontiers in Bioengineering and Biotechnology, 2013. 3. He et al., Gait posture, 2019

Contact: markus_a_wimmer@rush.edu